HC2025 操作与编程使用说明

目录

- 1 HC2025 数控系统软件简介
- 2 HC2025 操作界面
- 3 示教编程
- 4 手动移动工作台
- 5 运行程序
- 6 HC2025 菜单功能
- 7 数控参数及特殊工艺参数设置
- 8 回零
- 9 光纤激光器功率、频率与缓升缓降波形设置
- 10 I/O 端口测试
- 11 延时参数设置
- 12 系统配置文件
- 13 HC2025 基本编程代码
- 14 逻辑编程、双工位版本软件与双工位编程操作
- 15 特殊功能编程代码
- 16 数控工作台的螺距误差补偿
- 17 极坐标系实现匀速加工零件
- 18 送丝焊接功能
- 19 脱机/联机双功能网线卡操作
- 20 振镜焊接设置与编程

1 HC2025 数控系统软件简介

HC2025 数控系统软件是一款应用于计算机数字控制(CNC)领域的系统软件,该 软件提供高精度复杂的轮廓控制和速度控制,同时具备丰富的逻辑控制扩展能力,广 泛应用于激光焊接、激光切割、激光清洗、点胶控制以及加工中心等数控加工行业。

1.1 硬件平台及系统要求:

为保证系统操作流畅和稳定,请确保安装计算机的最低要求如下

CPU 主频	2.0G 双核
内存	2G 以上
固态硬盘	32G 以上
操作系统	WinXP,Win7,Win10,Ubuntu

注: 1、系统设置: 在电源使用方案设置中, 将系统等待, 关闭监视器, 关闭硬盘等全部设置为: **从不**。

2、计算机不能按装实时性很强的软件,如病毒实时监控软件等,以免影响 CNC 系统实时运行。

3、建议采用嵌入式 WIN7 系统或是 Ubuntu 全实时系统。

1.2 HC2025 数控系统主要功能和技术指标

HC2025 数控系统软件基于 C++研发,采用 FPGA 技术开发,硬件采用 网络接口(RJ45),具有 4-6 轴联动功能。系统主要功能:

- 联动轴数: 4 轴 4 联动, 最多 6 轴 6 联动
- 程序校验功能
- MDI 功能
- 绝对/增量编程(G90、G91)
- 英制、公制、脉冲数编程(G20、G21、G22)
- 镜像功能(G24、G25)
- 缩放功能(G50、G51)
- 自动、点动、步进、手摇、回零功能
- 快速定位(G00)、直线插补(G01)
- 圆弧插补(G02、G03)
- 扩展圆弧(圆弧+直线)插补(G02、G03)
- 暂停(G04)、螺纹功能(G33)
- S 功能: 等待输入口输入信号
- 设置/返回电器原点(G29、G30)
- 坡口切割 G32

- 反向间隙补偿、光斑半径补偿(G40、G41、G42)
- 坐标旋转功能(G68、G69)
- 子程序调用
- 静态/动态仿真
- 自动加减速控制
- 最大空载步进频率: 1MHz
- AutoCAD 图形文件转换功能(DXF 文件)

2 HC2025 操作界面

操作界面在"程序运行状态"和"示教编程状态"下有细微区 别,点工具栏上的"程序示教"切换两种状态。

在程序运行状态下,主界面从上至下为:菜单,工具栏,加工程序代码显示窗口,图形仿真窗口,状态栏;右边为坐标显示,运行程序按钮和 纠偏按钮,手动移动按钮。

图 2-1 程序运行状态下主界面

图 2-2 程序运行状态与示教编程状态切换

图 2-3 示教编程状态下主界面

在示教编程状态下,运行程序按钮自动切换到示教操作示教程序矫正按 钮。

为了避免误操作不小心修改 G 代码程序, 点工具栏上"代码/图形"图标

代码图形 可以关闭 G 代码,只显示图形。需要编辑和修改程序时, 再点"图形/

代码"打开G代码

>_

图 2-2 打开 G 代码与关闭 G 代码主界面

3 示教编程

3.1 示教编程操作

移动至工件起点,点工具栏上程序/示教按钮,进入示教编程状态后,点 **● 起点** (或按"空格键"),手动移动工作台,支持键盘上、下、左、 右箭头移动,支持鼠标点按钮移动,支持外部手动按钮移动,可以单步或连 续移动。

停靠点,进入示教编程后,第一次点 包 起点 (或按"空格键"), 即为停靠点。再移动到加工起点后,点 包 起点 (或按"空格键"), 才是加工轨迹起点,程序从停靠点空走到起点。

如果发现拟合轨迹不对,可以回退到上一节点

示教编程生成的程序中自动添加 M 指令,添加的 M 指令由文件夹中 outm.dat 文件 设置,用户可以根据自己的不同要求编辑修改 outm.dat 文件。

选择外部手动按钮移动时,按外接"启动"按钮为"终点"。

注:如果停靠点与工件实际起点有一段距离,进入示教编程后先在停靠点点"起点",然后移动到实际加工起点,再点"起点"。

当选择单步移动时, X,Y,Z,C 轴的单步距离可分别设置:

х Y Ζ C 示教单步 mm 2 10 5 4

3.2 示教程序(键盘操作)

手动移动工作台,

- X+移动: 右箭头→, 快速 Shift + →; 或鼠标点 $\begin{bmatrix} \\ & \\ & \end{bmatrix}$
- **X**-移动: 左箭头← , 快速 Shift + ← ; 或鼠标点
- **Y**+移动: 上箭头↑, 快速 Shift + ↑ ; 或鼠标点
- Y-移动: 下箭头↓, 快速 Shift +↓ ; 或鼠标点
- Z+移动: PgDn , 快速 Shift + PgDn ; 或鼠标点

Z-移动:	PgUp	,	快速 Shift + PgUp	; 或鼠标点	Z -
C+移动:	Home	,	快速 Shift + Home	; 或鼠标点	C+
C-移动:	End	,	快速 Shift + End	; 或鼠标点	C-

3.3 示教程序的误差矫正

如果发现程序与实际轨迹有偏差,再次进入示教编程,点 移至节点N 或 按键盘 N 键,当检查到有偏差时手动移动到正确位置,再点 移至节点N 或按 键盘 N 键,最后点 ,保存程序。 如果程序比较复杂,节点很多,可以先输入一个节点如 移至节点N 4 ,再选移动到下一点 移至节点N 或按键盘 N 键, 可直接移动到节点 4。

3.4 示教和手动操作中"手动速度"调节

手动速度从低到高设置为10档,分别按数字键1 2 3 4 5 6 7 8 9 0 切换手动速度。+ - 按键用来增大和减小手动移动速度。

其它快捷键:

"L"	直线/圆弧切换
Shift + 空格	空走
Shift + "起点"	空走
回车	终点 (或圆弧经过点)
空格	点焊

3.5 示教编程中图层的作用

有些工件需要用不同的功率参数加工,在激光电源设置中设置好图层 2 和图层 3 的功率参数,改变图层,示教编程将功率参数自动添加到加工线段。格式:

M07 F Z P 分别为频率(Hz),占空比(0-100%),功率(0-10V)

M07 F W P 分别为频率(Hz),脉宽(ns),功率(0-10V)

生成程序后,还可以手动修改这些参数值(修改后请保存程序),也可以手动添 加更多组参数。

4 手动移动工作台

在程序状态和示教编程状态下,均可手动移动工作台。支持键盘上、下、 左、右箭头移动,支持鼠标点按钮移动,支持外部手动按钮移动,可以单步或连续移动,需要精确定位时,可以选取慢速移动。

连续 单步 切换快捷键: M

 X+移动:
 右箭头→ , 快速 Shift + → ; 或鼠标点

 X-移动:
 左箭头← , 快速 Shift + ← ; 或鼠标点

 Y+移动:
 上箭头↑ , 快速 Shift + ↑ ; 或鼠标点

 Y-移动:
 下箭头↓ , 快速 Shift + ↓ ; 或鼠标点

 Z+移动:
 PgDn , 快速 Shift + PgDn ; 或鼠标点

注: 当键盘光标在程序代码窗口时,键盘操作用于G代码编程,不执行手动移动。 "CapsLk" 键用于切换 手动快速/手动慢速。 "Ctrl" 键用于切换 单步手动/连续手动。

手动移动速度分 10 档,按键盘上数字 1 2 3 4 5 6 7 8 9 0 速度由低(50mm/min)到 高(8000mm/min)变化。+ - 按键用来增大和减小手动速度。

外接操作面板手动

用外接操作面板上的 X+、X-、Y+、Y-、Z+、Z-、C+、C-移动工作台运动;按下键时,工作台移动;松开键时工作台停止移动。

5 运行程序

编好程序或者打开程序,就可以运行了。

按运行按钮或者按外接启动按钮运行程序。

按暂停或者再按一下外接启动按钮,暂停加工,并停止出激

光,停止吹气。

这回。只有当速度较低时才能保证精度,高速时可能会丢步。

继续 H

从暂停位置继续向下运行。

10

重复次数 1 👤	
停留时间	

设置重复运行当前程序的次数,最少为默认值1次。设置时不要从键盘输入,应该向 下拉右边的箭头,从中选择数字。停留时间为上一次加工完成到下一次加工之间的时间。_____

计件	9
总数	120

记录加工的零件数:包括某次清零后的零件数和零件总数。

清零只对零时计数清零。。

● 结束	停止加工,	退出运行。
------	-------	-------

• 回起点	
-------	--

回加工起点。

快捷键

- **F9** 暂停
- F11 回退
- F12 继续
- ESC 停止
- "CapsLk" 键用于切换 手动快速/手动慢速。
- "Ctrl" 键用于切换 单步手动/连续手动。

6 HC2025 菜单功能

最常用的菜单功能同时放在工具栏上。

6.1 文件管理

文件管理功能用于打开、保存数控加工程序,退出 CNC 系统等。其子功能有:新建、打开、调入内存、保存、另存为、打印、打印预览、打印设置、显示最近打 开过的 0~10 个文件、退出 CNC 系统等。 打开文件——可打开符合 ISO 标准的 G 代码文件。文件最大行数为 65535 行。当数控程序>65535 行时,需分为两个程序进行加工。 简便方式:最近用过的文件,在"文件"菜单下可直接打开。

图 6-1 文件菜单

6.2 文件编辑

文件编辑功能用于编辑己打开的数控加工程序。其子功能有:撤销、剪切、复制、 粘贴、查找、替换等功能。

文件(F)	编辑(E) 运行(R)	参数延
P	撤消	2
打开	剪切	数
	复制	
	粘贴	
	查找	
	替换	
	逻辑编程	

注: 文件修改后, 需要保存(F2) 才生效。

图 6-2 文件菜单

	点击最后一]	项菜单	"逻辑编程"	,	弹出逻辑编程对话框
--	--------	-----	--------	---	-----------

复制快键添加指令		×
输入等待:读到输入为高或(低时往下执行	
WAIT IN1	插入	
WAIT NOT IN1	插入	
标志行		
	垢 λ	○ 2 1 轮廓前
	JIII/ (○ 3 1 轮廓后
现转到标志行	4=t)	
G010 A1		
逻辑判断:有或没有输入时路	挑转到 LABL A1 行, 否则往下执行	
IF IN1 GOTO A1	插入	
IF NOT IN1 GOTO A1	插入	
延时指令 单位: 毫秒		
G04 T100	插入	
输入信号 IN1 IN2 IN3	IN4 IN5 IN6 IN8 IN9 IN10	IN11 IN12 IN13 IN14 IN15 IN16
对应脚:J5-345	6 7 8 J4-1 2 3	J3-18 17 16 15 14 13

图 6-3 逻辑编程对话框

运行菜单一般不需要操作。

6.3 参数菜单

图 6-4 参数菜单

7 数控参数及特殊工艺参数设置

7.1 数控参数设置

进入数控参数设置

参数设置口令为: 2000

点工具栏上

屏幕上弹出运动参数设置对话框,可设置:

运动参数设	置					X
步进当量 × C	1 1.8	Y	1	Z B	1 1.8	um 度/1000
加工速度 电源中 空走速度 最大	6000 月 6000 月	启动速度 回零速度	500 2000		C轴旋转n(整圈后坐标 0	如2)圈 微调到 示[如720.15]
加速度 × 手动速度× 50 停止与转弯速度	40 Y 50 500	Y Z 50 示教空走	40 C 50 ≣速度 10	米 <i>时</i> 利)	2	
小圆切割限速 速度单位:	● 1200 ● 毫米/分	限速小圆 ○ 毫米/	半径 0 秒			
回零方向 (-1, 0, X	. 1) -1 0	× 20 Z -10	零位偏置(⊓ ──────────────────────── └───────────	nm) 20 0		
反向间隙补偿 (um) 半径补偿 (mm)	× Y Z轴 [(D		0		
手摇每转距离mm	1	手摇快速倍	率 2			
确	U.	取 :	消			

图 7-1 数控参数设置

步进当量:也叫脉冲当量,是一个脉冲走多少距离或多少角度的意思。单位 0.001mm/脉冲(即:um/脉冲),由步进电机驱动电源的细分数和滚珠丝杆螺距决定。例: 细分为 10,即步进电机每转为 2000 个脉冲,丝杆螺距为 4mm,则步进当量为 2um (4 x 1000 / 2000)。

C 轴步进当量: 0.001 度/脉冲。

因为减速机的减速比一般都有误差,特别是涡轮减速机,误差更大。精确校准 C 轴的步进当量很麻烦,有时调半个小时还不能完全校准。

运动参数设	置					X
步进当量 × C	1 1.8	Y A	1	Z B	1 1.8	um 度/1000
加工速度 电源中 空走速度 最大	6000 6000	启动速度 回零速度	500 2000	ſ	C轴旋转n 整圈后坐 D	位□2]圈 微调到 标位□720.15)

HC2025 一分钟精确校准 C 轴步进当量的方法:

a> C 轴步进当量设置一个基本正确值后(有较小误差)。

b> 坐标清零, C 轴手动旋转整数圈(如 1800 度, 5 圈),并微调到整圈位置。

- c> 打开参数设置对话框,将C轴显示的坐标值填写在参数设置中的"C轴旋转n圈并微调到整圈后显示坐标值"(如 1797.46)。
- d> 软件可自动精确校准 C 轴步进当量。

加工速度:单位 mm/min,设置程序自动运动时的默认速度。当编程时程序中没有 给定速度,采用这一速度。如果程序中给定有加工速度,以给定速度为准。

启动速度:单位 mm/min,设置程序自动运动时的启动初始速度。由工作台的惯性和步进当量决定:一般取 200~1000。

极限速度(空走速度):单位 mm/min,设置程序自动运动时的最大速度,即 G00 速度。由工作台的惯性和步进当量决定:一般取 4000~10000 左右(即 4~10m/min)。

回零速度:单位 mm/min,设置工作台回零时得运动速度。

反向间隙补偿:单位 um,分别设置 X、Y、Z 轴的传动齿轮或丝杆间隙。

手动时运动速度:单位 mm/min,设置手动连续运动方式时的运动速度。由于手动移动工作台时无自动加减速,所以,该参数不能太大:一般取 200~1000。

X、Y 轴回零方向:一1表示负方向回零;1表示负方向回零;0表示该轴不回 零。

编程零点偏置(与机械零点距离 X、Y):为了定位方便,回零时可回到机械零 位(零位开关处),也可直接回到加工起点。设置编程零点与机械零点距离 X、Y,则 直接回到加工起点;当设置为(0,0)时,则回到机械零位。

光闸初始状态:光闸线圈无电流时光闸挡光或不挡光。

确认:设置生效,并保存参数,退出对话框。

取消:设置无效,退出对话框。

7.2 特殊工艺参数设置

参数菜单中第2项,特殊工艺参数设置

特殊加工工艺设置	
不关气最长距离 mm 0 焊接封闭起始段重叠 mm 0 焊接封闭起始段重叠 mm 0 焊接封闭起始段重叠 mm 0 提前关送丝(M03)距离 mm 0.5 回起点时Z轴先提升距离 mm 0 単轴启动速度 Z 500 A B C 600 単轴加速度 Z 10 A B C 20 加工 空走 20 20 加工 空走 20 1 C 轴速度倍率 1 1 1 B轴速度倍率 1 1 1 无线遥控器串口 1 500 300	特殊功能选项 B轴送丝 常吹气 加工层 加工完成时输出M77 原藤脚踏暂停(只启动) 耳筋脚踏暂停(只启动) 這 连续送丝 18脚控制脚踏出光 带手轮 提前送丝 ms 双Y轴(Y2轴接A轴) 延时送丝 ms 极限接手动按钮 近时送丝 ms 碰极限急停 送丝速度mm/s X <-> Z输出 送丝速度mm/s 禁止1-9数字键调速度 送丝时间 ms 仿真镜像 回丝速度mm/s 10 豆气压力保护 回丝速度mm/s 10 进入程序输出M3松抱闸 回丝长度 mm 2
光闸初始状态:	挡光 ○ Y ○ Z ○ C 确认 取消

图 7-2 特殊工艺参数设置

特殊工艺参数设置非常重要特别是图中框选的几个选项。

加工完成后输出 M77: 设置加工完成后输出 M77 信号,低电平 0.1 秒,也可以 在延时参数中设置 M77 信号时间。 光闸初始状态: 不挡光,挡光,如果 M91/M92 输出反了,请改变选项。 焊接封闭后起始段重叠,如果不需要,请设为 0. 焊缝矫正单步手动微调脉冲,当矫正太少时,增加脉冲数,最大为 10.

Z 轴和 C 轴的启动速度和加速度,这几个参数特别重要, C 轴的速度单位是度/ 分钟。

18 脚控制脚踏出光,不选时,不控制出光。
勾选极限接手动按钮时,可将外接手动操作面板按钮接在极限输入点上。
勾选碰极限急停:碰到 X,Y 轴极限时,立即停止,卡处于无效状态。
勾选带手轮时,可外接手轮(5V 或 24V 手轮,公共端 COM 为地)。
勾选双 Y 轴时,控制的 A 轴输出与 Y 输出完全一样。

8 回零

 Dialog

 回零速度
 2000
 将当前坐标值设为偏置值

 「 ×回零
 2回零
 回零后停靠位置

 「 Y回零
 0回零
 ① 机械零位
 ● 偏置点

 「 竹回零
 ○ 大先回零
 ○ 大先回零
 ○ 大先回零

 回零
 取消

图 8-1 回零对话框

当参数设置中设置轴的回零方向为1或-1时,回零对话框中才可以勾选是否回零。 可以勾选几个轴同时回零或者某个轴先回零。

X、Y、Z 轴一般应负方向回零,但有些工作台的零位开关安装在坐标轴的正限位 附近,为满足这一要求,软件提供了正方向回零功能。可选择一个或几个轴同时回零。

回零速度在参数设置中设置,一般可设为 500~1000mm/分钟左右。

注意:只有零位开关信号连入计算机时,本功能才有效。零位开关应装在极限开 关内侧。

回零可以回到机械零点,也可以回到编程零点,当参数设置中的"编程零点偏置 X"和"编程零点偏置 Y"(对机床零点)设置为 0,0 时,回零回到机床零点;当设置 了编程零点偏置值时,回零回到编程零点。

注:回零方向在参数设置菜单中设置:-1表示负方向回零;1表示正方向回零;0 表示该轴不回零。(参数设置中)

9 光纤激光器功率、频率与缓升缓降波形设置

点工具栏上

电源参数 进入激光电源设置。

光纤激光器功率与频率设置

功率与频率 开始阶段 收尾阶段 打点阶段 ● 设置左工位 ● 设置左工位 DA2 倍率(DA2/DA1) 0.9 保存左工位参数 保存右工位参数 速度模式下 转角 DA 输出功率 % (0-100) 20 转角 PWM 占空比 % (0-100) 2.2 ● PWM脉宽 ms (QCW或脉冲激光器) 脚踏出光 DA 功率 % (0-100) 20 ● B図层不同功率与PWM控制 ●				
 ● 设置左工位 ○ 设置右工位 DA2 倍率(DA2/DA1) ○.9 保存左工位参数 保存右工位参数 保存右工位参数 法度模式下 转角 DA 输出功率 % (0-100) 20 移角 PWM 占空比 % (0-100) 2.2 PWM脉宽 ms (QCW或脉冲激光器) 脚踏出光 DA 功率 % (0-100) 20 				
DA2 倍率(DA2/DA1) 0.9 保存左工位参数 保存右工位参数 速度模式下 转角 DA 输出功率 % (0-100) 20 转角 PWM 占空比 % (0-100) 2.2 PWM 脉宽 ms (QCW或脉冲激光器) 脚踏出光 DA 功率 % (0-100) 20 多图层不同功率与PWM控制				
速度模式下 转角 DA 输出功率 % (0-100) 20 转角 PWM 占空比 % (0-100) 2.2 PWM 脉宽 ms (QCW或脉冲激光器) 脚踏出光 DA 功率 % (0-100) 20 多图层不同功率与PWM 控制				
□ PWMM 脉宽 ms (QCW或脉冲激光器) 脚踏出光 DA 功率 % (0-100) 20 多图层不同功率与PWM 控制	_			
多图层不同功率与PWM控制				
设置图层 最大DA功率 % 最大PWM% PWM 频率 PWM 脉宽 加工速度				
图层1 80 80 2000 0.0011 6000				
图层2 〇 85.25 80.25 20000 0.0012 3000				
图层3 C 80 1.04 8000 0.0013 3000				
图层4 〇 75 85 8000 0 3000				
图层5 ① 70 82 8000 0 3000				
 ○ 固定值 ○ 距离模式 ○ 速度模式 ○ 激光熔覆模式 				
确定 取消 应	用(A)			

图 9-1 光纤激光器功率与 PWM 控制

1>最大 D/A 输出功率: 设置激光最大输出功率, 范围:0-100 (%)。
一般设置为 80~95。如: 设置为 90 时, DA 输出电压为 9V, 激光最
大输出功率为满功率的 90%。

2> 激光 PWM 频率: 24 伏 PWM 信号的频率,一般设置为
 5000-20000Hz。频率对连续激光器的影响不大。

3>最大PWM占空比: PWM高电平占百分比,范围:0~100。PWM 信号的作用与DA信号的作用基本相同,都是控制激光功率。激光 器实际输出的最大功率是二者的乘积,如:最大DA输出和最大 PWM输出都设置为80%,激光器的实际输出的最大功率只有64% (80% 乘80%)。所以,大部分情况下,最大PWM占空比设置为 100%,但如果激光器的满功率太大(如>1500瓦),满功率焊接, 工件可能发黄,这时,可以将最大PWM占空比设为85~95左右。
4>转角D/A输出功率: 加工过程中,在转角位置,加工速度减小, 因而可以适当减小DA输出。但因为光钎激光器对DA电压的响应 非常慢,所以,转角D/A输出功率一般和最大DA输出功率相同,

或者小 5%左右(速度模式下有效)。

5> 转角 PWM 占空比: 加工过程中,在转角位置,加工速度减小, 为了避免转角时烧坏工件,可以减小转弯时 PWM 占空比,一般比 最大 PWM 占空比小 10%左右(速度模式下有效)。

20

- 6> PWM 脉宽: 单位,纳秒 ns。光钎激光器的 PWM 信号有两种设置方法: 频率 + 占空比,或者频率 + 脉宽。连续激光器或连续模式一般用"频率 + 占空比"; 脉冲激光器或 QCW 模式一般用"频率 + 脉宽"。当选择脉宽设置方式时,改变频率或者改变脉宽,软件会自动计算 PWM 信号占空比。(脉冲激光器或 QCW 激光器选 PWM 脉宽设置)。
- 7> 功率控制方式:焊接一般选距离控制;切割一般选固定值。"距离控制"与"速度控制"的区别:在起始段和收尾段,两种控制方式一样;在中间段有区别:速度模式下,激光功率和 PWM 占空比在转角位置随速度减小而减小;距离模式下,激光功率和 PWM 占空比都为设置的最大值。
- 8> 多图层(同一程序需要选用不同激光功率和 PWM 频率加工): 设置好图层 2 和图层 3 的功率,PWM 参数,示教编程中,同一个程序如果需要用不同功率参数加工,请改变图层为图层 2,或图层 3。 (默认为图层 1 加工)。

图 9-2 开始阶段 距离--激光功率, 距离--PWM 占空比 波形

当设置开始阶段距离长度(功率缓升距离)和分段数量(分段数用 于设置激光功率)时,请点一下"应用"(当进入界面没有刷新图形时, 点一下"应用")后刷新图形。红线为激光功率输出波形,横坐标为缓 升距离,纵坐标为激光功率 0-100。蓝线为 PWM 占空比。

点一下鼠标左键选择分段点,移动鼠标,再点一下鼠标左键,可以 改变功率和 PWM 波形。 横坐标为起始段距离,红线为起始段 DA 输出,因为光钎激光器对 DA 电压 响应非常慢,所以红线开始上升很快。

图 9-3 收尾段波形

横坐标为起始段距离,红线为收尾段 DA 输出,因为光钎激光器对 DA 电压 响应非常慢,所以红线开始下降很快。

图 9-4 打点波形图

横坐标为打点时间,单位: ms。红线为点焊 DA 输出波形,蓝线为 PWM 信号 波形图。

点焊程序代码:

M07

M08

为了满足不同材料焊接加工要求, HC2025 软件在执行 M07 M08 代码时 有两种不同的输出模式:固定值模式和点焊波形图方式。

固定值模式:当激光功率控制方式选"固定值"时,软件在执行 M07 M08 代码时,按最大 DA 和最大 PWM 输出,出光时间为延时参数中 M07 出光时间。

点焊波形图输出方式: 当激光功率控制方式选"距离"或"速度"时,软件 在执行 M07 M08 代码时,按波形图输出 DA 和 PWM,出光时间为波形图中 打点时间(与延时参数中 M07 出光时间无关)。 注: 如果程序加工时,连续线段加工需要用距离模式,而打点希望用固定值 方式时,请勾选"距离"方式,并把打点波形图中 DA,PWM 拉到水平最大值, 把打点时间设置为需要值。

为了在示教过程中实现对工件点焊,在示教模式下点激光,程序按点焊波形 图输出激光。

10 I/O 端口测试

用于调试时测试零位、极限、操作面板上的按钮等对 24V 地的通断状态。程序每 秒钟自动测试一次,对地接通时打勾 "V"。还可以手动控制输出端口激光、气阀、光 闸。

	1/0	
点工具栏上	I/O状态	进入 I/O 端口测试。

I/O端口诊断			×
网线卡限位与零位信号输入		限位与零位信号输入	
启动 暂停 B+ B0 B	B- A+ A0 A- C+ C0 C-	Z+ Z0 Z- Y+ Y0 Y- X+ X0 X-	
	<u> </u>		
逻辑输入: IN11 IN12 II	IN13 IN14 IN15 IN16		All h
		输出信号	<u>a</u>
急停 A相 B相 Fast X轴	由 Y轴 Z轴 C轴 A轴 B轴 回起点 停止 16 IN5 IN4 IN3 IN2 IN1 (逻辑输入)	M50 M91 M60 M77 M09 M07 M05 M03	•
		単轴固定脉冲输出 釉1 ▼ 1 ▼ 个脉冲 发送 ● 正向 C 负向	Ē
所有输	俞入信号测试 确认 取消		

图 10-1 I/O 端口测试

11 延时参数设置

,进入延时设置对话框。

程序中可以在任意位置用 G04 语句插入延时。为了简化编程,将延时集中设置。

出激光前延时:当工作台走到焊接或切割起点时,先延时,再出激光(开 M07)。因为程序中有些空行程很短,从上次关激光到下次开激光之间的时间非常短,脉冲激光电源的充电时间不够,因此出激光前需要增加延时。

出激光(M07)延时:出激光后,延时,工作台再运动,开始焊接或切割。在激 光切割中,出激光后,要先穿孔,工作台再运动,因此出激光后需要延时,时间长短 与板材厚度,激光功率等有关。

关激光(M08)前延时:可设为正或负。

设为正值时:当切割或焊接完工件后,保持出激光,延时后再关激光。有些交流 伺服电机的响应速度比较慢,如果切完工件后马上关激光,有时工件上还会有一点没 有完全切下来,因此,需要延时关激光。

设为负值时:切割或焊接中,最后一段直线还没有加工完,就关闭激光。在大功 率激光切割中,由于激光功率很大,切割到最后,工件终点会烧一个洞,为了避免烧 伤工件,需要提前关激光,这时,设置为负值。

关激光(M08)延时:在大多数情况下,关激光不需要延时。但有部分厂家生成的机器采用中间继电器控制开/关激光,由于中间继电器关激光存在延时,如果输出 M08 后,工作台马上移动,可能激光还没有完全关断,会切割工件。因此,需要设置关激光延时。

吹气、开/关光闸采用中间继电器控制,都需要设置延时。

延时设置	X
出光前延时 (毫秒): 先延时,再出光	0
出激光M07延时(毫秒):出光后延时走轨迹(点焊时间在电源中设置)	0
提前关激光 [毫秒]: 加工完成前关光	0
延时关光M08 (毫秒): 负为关光前延时(多出一会光),正为关光后延时	0
吹气M09延时 (毫秒): 先吹气,延时后执行下一步	0
延时关气M10[毫秒]:加工完成后,多吹一会,再关气	0
开光闸M91延时(毫秒):开关闸,延时后执行下一步	0
关光闸M92延时(毫秒):关光闸,延时后执行下一步	0
M03延时 (毫秒): 输出M03, 延时后执行下一步	0
M05 延时 (毫秒): 输出M05, 延时后执行下一步	0
	I
M50延时(毫秒): 输出M50,延时后执行下一步	0
M55延时(毫秒): 输出M55,延时后执行下一步	0
M77延时 (毫秒): 输出M77,延时后执行下一步	0
M79延时 (毫秒): 输出M79,延时后执行下一步	0
M60延时(毫秒): 输出M60,延时后执行下一步	0
M65延时(毫秒): 输出M65,延时后执行下一步	0
确认 取消	

图 11-1 延时参数设置

12 系统配置文件

12.1 中英文界面设置

Sconfig 目录下的 language.lib 文件中设置为 CHINESE 或 ENGLISH.

12.2 默认参数设置

Sconfig 目录下的 Startdef. dat 文件中设置 画矩形和圆参数:

	mm	inch	
1_RECTANGLE_X	200.0	6.0	矩形长度
2_RECTANGLE_Y	200.0	6.0	矩形宽
3_CIRCLE_RADIUS	100.0	4.0	圆半径

外轮廓导入导出参数(导入长度和角度)

10_LEADIN_LEN_LINE	1.0	0.8	导入长度
11_LEADIN_ANG_LINE	30.0	30.0	导入角度
12_LEADOUT_LEN_LINE	1.0	0.8	导出长度
13_LEADOUT_ANG_LINE	30.0	30.0	导出角度

孔导入导出参数(导入长度和角度)

22_HOLE_LEADIN_TYPE 1	1		
23_HOLE_LEADIN_LEN_LINE	0.5	0.15	导入长度
24_HOLE_LEADIN_ANG_LINE	45.0	45.0	导入角度
25_HOLE_LEADOUT_LEN_LINE	0.4	0.12	导出长度
26_HOLE_LEADOUT_ANG_LINE	45.0	45.0	导出角度

排列间距

82_NOT_USE	12.0 0.5					
83_NEST_ARRAY_GA	P_X	10.0	0.4	Х	方向排列间距	ī
84_NEST_ARRAY_GA	P_Y	10.0	0.4	Y	方向排列间距	ī
85_NEST_RING_ARRA	AY_GAP		10.0	0.4	环形排列间距	ī

12.3 自动编程参数设置文件\Sconfig\table.dat

//通用部分,对所有后置处理有效 // 零件程序开头(是否有%: on 表示有: off 无) Program Begin: off Start Point: Off // Origin 表示加工起始点在机床原点; 否则在零件 起点:绝对坐标编程时加工起始点必为机床原点 Line Number: // on 表示写行号; off 不写行号 on Increment Number: // 行号增量 1 4 // 小数点后精确位数 Accuary: // on 表示写加工速度; off 不写加工速度 Cutting Speed: on // 加工程序后缀名 Program Tail Name: .txt // on 表示绝对坐标编程; off 表示增量坐标编程 Absolute Program: off G91 // 绝对或增量坐标编程代码,必须与上述 Programming Mode: Absolute Program 方式一致 KerfComp: off // on 表示加刀具半径补偿, off 表示不加半径 补偿 //Z上升距离,单位:mm 0表示没有没有Z或者 Zup: 0 无上升/下降 //机器专用部分,选 table 配置时有效 // mm 或 inch 所用代码;必与图纸单位一致 Units: G71 // 注释开始 Start Comment: (End Comment: // 注释结束) // 快速移动 Rapid Mode: G00 // 速度符号; 不需速度时为 off Feedrate: Off Linear Interpolation: G01 // 加工直线 Clockwise Circle: // 加工顺时针圆弧 G02 Counterclockwise Circle: // 加工逆时针圆弧 G03 Disable Kerf: // 取消刀具半径补偿 G40 // 左刀补 Left Kerf: G41 Right Kerf: G42 // 右刀补:本程序中不采用右刀补 Cutting Device On: M00 // 切割开始 Cutting Device Off: M00 // 切割结束 Powder On: M09 // 喷粉开始 Powder Off: M10 // 喷粉结束 Program End: M02 // 零件程序结束

HC2025 简易操作说明

- 1、 用"打开"命令调入编好的程序。
- 2、 按 F4 键或按"运行"命令运行程序。
- 3、 按回车键或按自动运行中的"运行"命令自动执行程序。
- 4、 当选择面板操作时,每次按 Atart 键运行程序。按 +/-、X、Y、Z 键手动移动工作 台。

自动编程简易操作说明

- 5、 用"图形与转换"菜单下的"自动编程"命令进入自动编程系统。
- 6、 按工具栏上的"打开.dxf"图标,调入AutoCAD 生成的 dxf 图形文件。
- 7、 用左边"套料功能"中的图标"恢复零件"、"重排序等"规划切割顺序。
- 8、 按工具栏上的"保存.n"图标,自动将图形转换为数控程序。

13 HC2025 数控系统编程说明

采用数控方法加工零件,首先必须将被加工零件的工艺顺序、运动轨迹 工艺参数等按其动作的顺序,用数控机床规定的代码程序格式编好加工程 序,这个过程称之为程序编制。

通常一个加工程序由若干程序段构成,而程序段又是由一条或几条数控 代码指令组成。

HC2025 数控系统编程方法有自动编程、视教编程、手工编程。

自动编程

点击图形与转换菜单下的自动编程,则进入自动编程功能。编辑完图形后按工具 栏上的保存为.n则自动将图形转换为数控程序,并回到数控加工状态。自动编程请参考 StarCAM 手册。

手工编程

在本系统中采用的数控代码有:

一、G代码

1.G00(或 G0、 g00、 g0)

功能:快速移动到终点。

格式: GOO Xa Yb Zc Cd Ae Bf

说明:由直线的起点向终点作一向量,向量在 X 方向的分量为 a,在 Y 方向的分量为 b,在 Z 方向的分量为 c,所以 a、b、c 是带符号的(单位:毫米)。 编程时可以省去 Xa、Yb、Zc 中为零的项。

例: G00 X100

工作台以运动参数设置中所设置的上限速度从(0,0,0)点运动到(100,0,0)点。

G00 X100 Y100

工作台以运动参数设置中所设置的上限速度从(0,0,0)点运动到(100,100,0)点。

G00 X100 Y100 Z100

工作台以运动参数设置中所设置的上限速度从(0,0,0)点运动到(100,100,100)点。

2. G01 (或 G1、 g01、 g1)

功能: 直线插补

格式: GO1 Xa Yb Zc Cd Ae Bf [Ff]

说明:由直线的起点向终点作一向量,向量在 X 方向的分量为 a,在 Y 方向的分量为 b,在 Z 方向的分量为 c,所以 a、b、c 是带符号的(单位:毫米)。 Ff 是可选项,f 为工作台的运行速度,单位(毫米/分)。如果在这一条代码 指令前执行的代码指令规定了速度值,而此时不改动的话,本项可省略。

编程时可以省去 Xa、Yb、Zc 中为零的项。

例: G01 X100 F1000

工作台以1000mm/min的速度从(0,0,0)点运动到(100,0,0)点。

G01 X100 Y100 f2000

工作台以 2000mm/min 的速度从(0,0,0)点运动到(100,100,0)点。

G01 X100 Y100 Z100 f1500

工作台以1500mm/min的速度从(0,0,0)点运动到(100,100,100)点。

实例 1: 编写图 1 轨迹数控加工程序(起点在左下角,运动方向如箭头所示)

M07	出激光	
G04 T100	停 100 毫秒	
G01 Y160 F5000	Y正向走 160mm	运动速度为 5000mm/min
G01 X200	X 正向走 200mm	
G01 Y-160	Y 负向走 160mm	
G01 X-200	X 负向走 200mm	
M08	关激光	
M02	程序结束	

注意: C 轴为旋转轴,当工件直径不同时,旋转相同的角度,工件上的旋转弧长 是不一样的,因此,采用传统的数控系统,都不能保证匀速加工。HC2025 在示教编程 中,通过输入工件(图 1 右边),当工件的直径变化时,输入工件当前位置处的直径,

32

从而保证匀速加工。

生成的 G 代码格式: GO1 X Y Z C D D 后面为工件直径, 如:

G01 X20 Y20 C90 D150 表示工件直径为 150mm, 当代码中包含工件直径后,可以实现匀速加工。

G01 多轴独立运动(不联动)编程方法

多轴联动:几根轴同时开始运动,同时结束,形成特定的轨迹。 多轴独立运动(不联动):每根轴的移动距离,运动速度都是 任意的,虽然同时开始运动,但停止时间可以不同。在自动控制 领域应用很多,所以,HC2025增加了多轴独立运动功能。

多轴独立运动(不联动)编程: G01 X Fx Y Fy Z Fz C Fc A Fa 分别是每根轴的移动距离和速度,例: G01 X500 F2000 Y30 F2500 Z60 F800

表示 X轴以2000mm/min 的速度走500mm, Y轴以2500mm/min 的速度走 30mm, Z轴以800mm/min 的速度走 60mm。每根轴各走 各的,先走完先停下来。

3. G02(或 G2、 g02、 g2)

功能:顺时针圆弧插补。

格式: GO2 Xa Yb Id Je [Ff]

说明: X、Y、F 三项同 GO1。

由圆弧起点向圆心作一向量,向量在 X 方向的分量为 d、Y 方向的分量为 e。 例: G91

G02 X0 Y0 I2 J0 F1000

工作台以 1000mm/min 的速度顺时针走半径为 2 mm 的整圆。起点坐标为(0,0),终 点与起点重合,所以,x、y坐标差为(0,0);圆心坐标为(2,0),所以,从起点到圆心的 向量在 x、y方向的分量 I、J 分别为(2,0)

G91

G02 X100 Y100 I100 J0 f2000

工作台以 2000mm/min 的速度从(0,0)点运动到(100,100)点顺时针走半径为100 mm 的1 / 4 圆。终点与起点 x、y 坐标差为(100,100); 圆心坐标为(100,0), 从起点到圆心的向量在 x、y 方向的分量 I、J 分别为(100,0)。

GO2 Z C I J 工位2 顺圆

4. G03 (或 G3、 g03、 g3)

- 功能:逆时针圆弧插补。
- 格式:同 G02。
- 说明:同G02。

G03 Z C I J 工位2 逆圆

实例 2: 编写图 2 轨迹数控加工程序

图 3

M07 G04 T200 G01 X0 Y300 F2000 G03 X100 Y100 I0 J100 G01 X200 Y0 G02 X100 Y-100 I0 J-100 出激光
停 200 毫秒
Y 正向走 300mm
逆时针走 1/4 圆弧
X 正向走 200mm
顺时针走 1/4 圆弧

G01	X0 Y-200	Y 负向走 200mm
G02	X-100 Y-100 IO J-100	顺时针走 3/4 圆弧
G01	X-300.000 Y0.000	X 负向走 300mm
M08		关激光
M02		程序结束

G02 G03 功能扩展:

XZ, YZ 平面圆弧功能。
功能: GO2 顺时针圆弧插补, GO3 逆时针圆弧插补。
格式: GO2 Xa Zb Id Je [Ff]
GO2 Ya Zb Id Je [Ff]

说明:X、Z、F 三项同 GO1。 Y、Z、F 三项同 GO1。

例:

G02 X0 Z0 I0 J10 F2000 G02 Y0 Z0 I20 J0 F2000

XYZ 任意两轴走圆弧与第三轴同时走直线插补功能,编程方法:
XY 圆弧 Z 直线
G02 X_Y_I_J_Z_F_
G03 X_Y_I_J_Z_F_
G03 X20 Y20 I0 J20 Z-10 F1000
XZ 圆弧 Y 直线
G02 X_Z_I_J_Y_F_
G03 X_ Z_I_J_Y_F_
G03 X_ Z0 I0 J20 Z20 F1000
YZ 圆弧 X 直线

G02 Y_ Z_ I_ J_ X_ F_ G03 Y_ Z_ I_ J_ X_ F_ 例: G02 Y0 Z0 I0 J20 X-20 F1000

5. G04(或 G4、 g04、 g4)

功能:插入一段延时。

格式: G04 Tt

说明: t 为延时时间, 单位: 毫秒。

例: G04 T1000 停留 1S。

6. 刀具半径补偿 G40 、G41、G42 (或 g40、 g41、 g42)

功能: G40--刀具半径(或长度)补偿取消。

G41--左刀补。

- G42--右刀补。
- 格式: G40

G41 G42

例:右刀补
G91 相对坐标编程
G42 启动刀补
G01 X20 Y20 F1000
G01 X40
G01 X40
G01 Y30
G01 X-40
G01 Y-30
G40 撤消刀补
G01 X-20 Y-20
M02 程序结束

7. 英制、公制、脉冲数编程(G20、G21、G22) 功能: G20--英制编程(inch)

G21--公制编程(mm)

G22--脉冲数编程(脉冲)

- 格式: G20
 - G21

G22

8. 缩放功能(G50、G51)

- 功能: G51--指定缩放 G50--取消缩放
- 格式: G51 Pp

G50

说明: p:放大或缩小倍数

例:

G51 P1.2 -----将图形或文字放大 1.2 倍。

9. 坐标旋转功能 G68 、G69(或 g68 、g69)

- 功能: G68--坐标系旋转。 G69--取消坐标系旋转。
- 格式: G68 P**Φ**

G69

说明: Φ为旋转度数。

一般用于板材切割中,当板材没放正时,对整张板进行旋转。

- 例: G90
- 绝对坐标编程
- G68 P45 坐标系逆时针旋转 45 度
- G01 X10 F1000
- Y10
- X-10
- Y-10 G69

M02

- 取消坐标系旋转
 - 程序结束

10. 绝对、相对坐标编程 G90 、G91 (或 g90 、g91)

- 功能: G90--绝对坐标编程。
 - G91--增量坐标编程。
- 格式: G90
 - G91

当程序中没有出现 G90、G91 代码时,默认编程方式为增量坐标编程方式。 例:将实例1和2的加工程序改为绝对坐标编程。

图 5

G90	绝对坐标编程
M07	出激光
G04 T100	停 100 毫秒
G01 X0 Y160 F5000	走到位置(0,160)
G01 X200 Y160	走到位置(200,160)
G01 X200 Y0	走到位置(200, 0)
G01 X0 Y0	走到起点位置(0,0)
M08	关激光
M02	程序结束

G90	绝对坐标编程
M07	出激光
G04 T200	停 200 毫秒
G01 X0 Y300 F2000	走到位置(0,300)
G03 X100 Y400 I0 J100	逆时针走 1/4 圆弧
G01 X300 Y400	走到到位置(300,400)
G02 X400 Y300 I0 J-100	顺时针走 1/4 圆弧
G01 X400 Y100	走到位置(400,100)
G02 X300 Y0 I0 J-100	顺时针走 3/4 圆弧
G01 X0 Y0	走到起点位置(0,0)
M08	关激光
M02	程序结束

注意:无论是绝对坐标编程,还是相对坐标编程,I、J的值始终为从圆弧起点到圆心的相对坐标。

11. 设置/返回电器原点 G29、G30)

功能: G29--设置当前位置为电器原点。

G30--返回电器原点。

格式: G29

G30

例:设置加工起点位置为电器原点,加工完毕后返回起点

 G29
 设置当前点为电器原点

 G01 X10 F5000
 Y20

 Y20
 返回电器原点

 M02
 程序结束

12. 在零件加工程序中设置零位偏置 G14

格式: G14X Y Z C A B

例: G14 X20 Y30

当工作台回机械零位时,先找准机械零位,然后偏置到(20,30)位置。 如果零件程序中没有 G14 指令,偏置值为1 设置中的数值。

13. 小线段连续加工(G64、G60)

功能: G64--连续加工开始。

G60-一取消连续加工。 格式: G64 G60

14. 镜像功能 (G24)

X 轴镜像(相当于 Y 轴反向):

G24 X0

Y 轴镜像(相当于 X 轴反向):

G24 Y0

X、Y轴同时镜像:

G24 X0

G24 Y0

注:镜像时自动将当前程序 X 或 Y 轴的正负限位开关镜像,对于不镜像

的零件程序,X或Y轴的正负限位开关为正常方向。

15. 坡口切割(G32)

功能: G32--设置固定坡口或变坡口值。 格式: G32 B 设置下段线的固定坡口角,单位:度。 例: G32 B15 设置下段线的固定坡口角为15度。

格式: G32 C 设置下段线的变坡口角,单位:度。

例: G32 C15 设置下段线的坡口角由当前值均匀变化到 15 度。

16. 多工件加工原点设置(G54 G55 G56 ... G58)

当用户需要加工多种不同工件时,因为不同工件的加工起点不同,因此, 由软件保存这些加工起点,用户在示教编程时可以把这些不同的加工起点作 为编程原点,因此,示教编程非常方便。

参数菜单下第三项"工件坐标系设置"

功能: G54--工件起点坐标, 第一次加工时, 从当前原点坐标移动到

40

G54 位置,并把G54 位置设定为新的"当前原点坐标"。每次加工完成后停 止在 G54 位置。

格式: G54 (G55等)。

注意:

① G54, G55, G56, G57, G58 可以设置加工起点不在当前原点的其他 5 种不同工件的起点。其坐标值全部为相对于机械零点的值,不是相对于偏置 点的坐标。

② 当前原点坐标:为工件的加工起点,工件每次加工完成后,回到加工起 点,将该工件起点保存为"当前原点坐标"。当工件加工程序中没有G54等 代码时,当前原点坐标为工作台回零后的偏置点,当工件加工程序中有 G54 等代码时,加工第一个工件后,当前原点坐标为G54等设置的置。

③ 工作台回零时,可以偏置到当前原点坐标。

- 17. **M**代码
 - **M00** 程序暂停
 - M01 工件计数,一般用于子程序,一个子程序为1个工件
 - **M02** 程序结束
 - M17 子程序返回
 - M03、M04
 - M05、M06

- 34 脚对地(VSS1)接通/断开。 15 脚 对地(VSS1) 接通/断开。

M07、M08 控制出光/关光 33 脚对地(VSS1)接通/断开。

M00 程序暂停与 G04 区别, G04 T1000 表示暂停 1000ms。M00 则无 限暂停, M00 暂停后继续操作:

- 鼠标: 点继续, 暂停后继续往下执行程序。
- 键盘: 按回车键或空格键, 暂停后继续往下执行程序。
- 按钮: 按启动按钮, 暂停后继续往下执行程序。
- (点结束,则不往下执行程序,直接结束运行)。

M07 F Z P N L

F 频率(Hz), 如: F20000.00 激光频率为 2 万 Hz Z占空比(0-100%),如: Z90 占空比 为 90% P 功率(0-10V), 如: P8.80 DA 输出 8.8V, 激光功率 88% N 层 1-5 层,如:N1 第一层 L (Left) 左工位。R (Right) 右工位 例: M07 F20000.00 Z90.00 P8.80 N1 L M08 关断 PWM 同时关断 M07

M09、M10气阀通/断14 脚对地(VSS1)接通/断开。M92、M91光闸开/关13 脚对地(VSS1)接通/断开。注:M03/M04、M07/M08、M91/M92等最大电流<200mA。</td>

18.子程序编程

Q代码

功能:标明子程序名。 格式: Qmn 说明:m、n均为一位十进制数。 L代码 功能: 子程序调用。 Lmn pa 说明:m、n、p、q均为一位十进制。表示连续调用 Qmn 子程序 pq 次。 例:工作台以 1m/min 的速度走一边长为100 mm 的正方形,循环两次。 L01 02 调1号子程序2次 M02 程序结束 Q01 子程序开始 G01 X100 F1000 Y100 X-100 Y-100 M17 子程序结束

格式

L 代码、Q 代码必须单独作一行,其它的代码无此限制,但每行最多只 允许有 65 个字符(包括空格符在内)。代码的各项之间、代码与代码之间 可用空格、逗号或"Tab"分隔,也可以不隔开。大小写任意。

本系统中的基本图形有三种:直线、顺时针圆弧、逆时针圆弧(与 G01、 G02、G03 代码对应)。当图形不变时,后面的 G 代码可省去不写,下列两种

42

格式是等效的:	
标准格式:	省略格式:
•••	•••
G01 X···· Y··· Z··· F···	G01X····Y····Z····F····
G01 X···· Y··· Z··· F···	X••••Z••••F••••
GO3 X··· Y··· I··· J··· F···	G03XYIJ
GO3 X··· Y··· I··· J··· F···	X•••Y•••I•••J•••F
	•••

行号

在每一行的最前面,可用 Nn 标明行号, n 为整数。 行号可以省去不写。

例: N100 G01 X100 F1000 等价于: G01 X100 F1000

注:编辑程序或修改程序后,应"保存"程序,保存后程序才生效。

14 HC2025 逻辑编程、双工位版本软件与双工位编程操作

① 标志行语句: LABL 用于标志某一行位置, 与 GOTO 语句配合使用。 例:

- LABL A0
- •••
- LABL A1
- • •
- GOTO A1
- • •
- GOTO A0
- 注:
 - "LABL" 4 个字母之间没有空格;
 - "A1"2个字符之间没有空格;
 - "GOTO"4个字母之间没有空格;
 - "LABL"与"A1"之间、"GOTO"与"A1"之间必须用"空格"格开。
- ② 跳转语句: GOTO 跳转到标志行位置。
- ③ 输入点判断(共16个点)

IN1~IN16 低电平(对 24V 地导通有效)。

NOTIN1 NOTIN2 NOTIN3 NOTIN4 NOTIN5 NOT IN6 NOTIN8 前面加 NOT 表示对输入信号取反,分别表示输入端口对 24V 地断开。

注:

"IN1"3个字符之间没有空格;

"NOTIN1"6个字符之间没有空格;

④ 逻辑判断语句: IF 如

IF IN1 GOTO A0 表示 如果 10 芯上的 第 1 脚对地导通, 跳转到标 志行 **LABL A0** 位置。

注:

"IF" 2 个字母之间没有空格;
"IN1" 3 个字符之间没有空格;
"A1" 2 个字符之间没有空格;
"GOTO" 4 个字母之间没有空格;
"IF" 与"IN1" 与"GOTO" 与"A0"之间必须用"空格"格开。

IF IN1 AND IN2 AND IN8 GOTO A0

AND 也可以写成 & : IF IN1 & IN2 & IN8 GOTO A0

⑤ 无限等待语句:WAIT, 无限等待某个输入点,直到"有"或"无"时往下执行。例:
 WAIT IN1

WAIT NOTIN1

注:

"WAIT"4个字母之间没有空格; "NOTIN1"6个字母(数字)之间没有空格; "WAIT"与"NOTIN1"之间必须用"空格"格开。

典型例子(用于数控点胶机):

LABL A0 程序执行开始位置

IF IN1 GOTO A1 检测到1脚(涂胶信号)对地通时,跳转到 A1 开始 涂胶 IF IN2 GOTO A2 检测到2脚(浸油信号)对地通时,跳转到 A2 浸入 油杯 IF IN3 GOTO A3 检测到3脚(排胶信号)对地通时,跳转到 A3 开始 排胶 G90 绝对坐标编程 G00 X50 Y60 移动到待命点 跳转到 A0 (进入一个循环, 检测到涂胶等信号才跳出) GOTO A0 LABL A1 开始涂胶 M07 ... M08 G00 X50 Y60 涂完胶后移动到待命点 GOTO A0 LABL A2 浸油 G00 X20 Y20 M05 . . . WAIT IN1 无限等待涂胶信号 . . . GOTO A1

LABL A3 开始排胶 G00 X30 Y40 移动到排胶区 M09 WAIT NOTIN3 无限等待排胶信号断开 (手动排胶按键带锁) ... G01 X50 Y60 排完胶后移动到待命点 GOTO A0 M02

WAIT INn 扩展编程 WAIT INn ms Mm 表示等待多少毫秒后 M 指令 例: WAIT IN1 8000 M03

双工位逻辑编程模板程序:

G90

F2000.0

G64

LABL A0	主循环
IF IN1 GOTO A1	读到 IN1 执行工位 1
IF IN2 GOTO A2	读到 IN2 执行工位 2
GOTO A0	一直循环读启动信号

LABL A1 工位1

G00 X-20	从停靠点移动到工位1起点
M09	
M92	
M07	
M91	
G02 X-20 Y0 I5 J0	
M08	
M10	
G01 X0 Y0	
GOTO A0	返回主循环
LABL A2	工位 2
G00 X20	从停靠点移动到工位2起点
M09	
M92	
M07	
M91	
G01 X30 Y0	
G01 X30 Y10	
G01 X20 Y10	
G01 X20 Y0	
M08	
M10	

G00 X0 Y0

GOTO A0 返回主循环

M02

程序结束

双工位版本软件与双工位编程操作

用上述逻辑编程方法虽然可以实现双工位编程,但操作比较复杂, 为了简化操作,专门开发了双工位版本,编程和操作方法如下:

1 示教编好左工位程序

进入电源设置,选择左工位状态(选设置左工位)

aser Power 功率与频率 日始阶段	妆屋阶段 打占阶段						
A PART PRANT		◎ 设置左工位	0	设置右工位			
DA2 倍率(DA2/DA1	0.9	保存左工位参数	șt I	保存右工位参数			
速度模式下 转角	DA 输出功率 % (0-1	100) 20	☆」	% (0-100) 2.2	_		
P	□ PWM 脉宽 ns (QCW或脉冲激光器)						
	4	Bezentzterwa	r · · · · · ·	20			
	· · · · · · · · · · · · ·	图层小回切率与凹	utizi 市J	1	_		
设面图层 最大DA	·IJ伞 % 最大P₩M%	PWM 频率	PWM脉宽	加工速度	Ē.		
图层1 @ 80	80	2000	0.0011	6000			
图层2 C 85.2	5 80.25	20000	0.0012	3000			
图层3 C 80	1.04	8000	0.0013	3000			
图层4 〇 75	85	8000	0	3000			
图层5 〇 70	82	8000	0	3000			
○ 固定値	@ 55亩措式		市商棋式	○ 谢兴惊嘉措于			
	□ 此崗保1、	0.2	区位19月15日	∪ 涨几浴復快式			
			确定		亚用(A)		

然后进入示教编程,示教好左工位程序,并保存文件,如取文件名为 ABC

2 示教编好左工位程序并保存,然后点击文件选项里的新建,新建文件

🦾 - 欢i	空使用 HC	2025			-
文件(F)	编辑(E)	运行(R)	参数	延时	定位
新建 打开 调 <i>)</i>	∎ Ŧ(O) Ctrl \内存(L)	+0 Ctrl+L			客
保有另有	享(F2) 字为(A) □				
打印	- P预览(V) P设置(R).				
10	:\Users\		C		

进入电源设置,选择右工位状态(选设置右工位),然后进入示教编程, 示教好右工位程序,并保存文件,如取文件名为 CCDF

(如果已经编好左右工位程序,则省略上述1,2步。)

3 分别打开左右工位零件程序

打开零件程序后,界面左上角会同时显示左工位和右工位程序名,斜杠 / 的左 边是左工位零件名, 右边是右工位零件。

4 运行

按外接左工位启动按键运行加工左工位零件,按右工位启动按键运行加 工右工位零件。

提前预约: 在左工位还没有加工完时,可以提前按右工位启动按键预约,预约后,完成左工位加工时,立即从左工位终点直接移动到右工位起点加工右工位;在右工位还没有加工完时,可以提前按左工位启动按键预约。

15 特殊功能编程代码

15.1 圆柱面上切圆编程(G09)

用 G09 设置圆柱面的半径,然后用 G02 或 G03 编程。

例: 在半径为 50mm 的柱面上切半径为 1mm 的圆, 由平移轴 X 和旋转轴 C 联动实现圆弧插补。

G09 R50

G02 X0 C0 I1 J0 F200

I,J为起点到圆心的距离,单位:mm。

15.2 等距脉冲与虚线切割(G09)加在程序第一行

格式:

G09 L_ D_

L: 每段等距长度。

D: 出激光长度。

当用等距脉冲焊接时,一般 D 很短,

例: G09 L0.5 D0.1 表示每段等距长度为 0.5mm, 出激光长度 0.1mm。 当用于虚线切割时, 一般 D 比较长, 例: G09 L0.5 D0.45 表示每段等距长度为 0.5mm, 出激光长度 0.45mm。 留 0.05mm 不切割。

在 G09 后的 G01, G02, G03 为等距脉冲与虚线切割(不需 M07/M08 控制), G00 为空走(不出激光)。

注:用等距脉冲与虚线切割功能时有一点振动,各轴的脉冲当量应尽可能小, 以减小振动。

15.3 加工几个零件后工作台自动回零(G10)

在程序第一行用 G10 R_ 定义加工工件个数。 例:每加工 5 个工件后,工作台自动回一次零位 G10 R10

在任意位置回零

G10

或 G10 R0

15.4 螺旋线编程(G02, G03)

在平面圆弧编程 G02, G03 的基础上加 Z 轴上升、下降距离(加在 J 后面)。 例:

G02 X0 Y0 I10 J0 Z10 F2000

15.5 激光功率与频率编程代码

为了改变频率方便,在程序中写频率

1 频率写在 M07 后面.

2 频率范围 0 - 100 Hz.

3 最小时间间隔 5ms, 所以, 频率低时和连续变化(如 0.1, 0.2, 1.5, 1.8Hz 等); 频率高时不能连续变化(如: 100Hz 和 102Hz 是一样的).

4 当频率没有变化时, 第二个 M07 后面的 频率 Freq 可以不写. 只有变化时 才写.

5 当所有的 M07 后面都没有 Freq 时, 软件和以前一样用法.

例:

M07 F10 W1.6 P9.5 //激光频率 10Hz, 脉宽 1.6ms, DA 电压 9.5 伏

G01 X10

Y10

M08

M02

15.6 双工作台加工编程 G92

因为劳动力成本上升,为了提高加工效率,很多用户用一台激光器(用 光闸控制切换光路),用一台电脑,一套控制卡控制两个二维或三维工作台, 实现双工位加工。除工作台外,其余都是单套。

第一个工作台的 X, Y 轴接卡的 X, Y 输出;第二个工作台的 X, Y 轴接卡的 Z, C 输出,但编程时,不用 Z, C,全部用 X,Y 编程。

手动操作可以用 X, Y, Z, C 分别移动工作台,操作方便。

编	程实例:	G92 以下的代码用于控制第二个工作台
G	90	
Ge	64	
MS	92	
M)9	
M)7	
F	1200	
G	01 X40 Y0	
G	01 X40 Y40	
G	01 X0 Y40	
G	01 XO YO	
M)8	
M	10	
G	92 切	D换到第二个工作台输出
MS	91	
Me	50	
M)7	
G	02 XO YO I	30 J0
M)8	
Me	35	
M)2	

16 数控工作台的螺距误差补偿

有些激光设备对工作台的精度要求很高,比如:一些划片机 的加工精度要求达到 0.005mm,要求工作台的精度达到 0.002mm。 而工作台的精度每提高一倍,其加工成本将近高出一倍,用户 希望既要成本低,又要精度高,因此,只有在数控系统中通过 螺距误差补偿来提高工作台的精度,才能满足用户这一要求, 因为用软件补偿误差的成本几乎为零。

螺距误差是丝杆螺距的理论值与实际值之差,可分为线性误 差和非线性误差两部分,线性误差随移动距离增大而增大或者 减小,误差与丝杆长度成线性关系,而非线性大都成"V"型、 "W"型或"S"型。螺距误差补偿方法,是用数控系统按一定 间距控制工作台移动"理论距离",再用激光测距仪测量各点 的实际距离,通过数控软件修正实际移动距离,使之尽可能接 近理论值,一般可以补偿80%的误差,如:当工作台精度为0.02mm 时,通过螺距误差补偿,精度可以达到 0.004mm。实践发现,通 过数控软件补偿工作台误差时,正确的方法非常重要,如果补 偿方法不好,补偿效果很不明显,方法恰当时,精度可以提高5 倍以上。螺距误差补偿中有两点非常重要:一是要先通过改变 步进当量基本消除螺距误差中的线性误差,例:300mm 行程的误 差可能大于 0.1mm, 但其中的非线性误差可能只有 0.03 左右。 如果不先消除线性误差,补偿后的精度只能达到 0.02mm 左右。 通过改变步进当量消除线性误差后,再进行螺距补偿,精度达 到 0.006mm,补偿效果十分明显。另一个技巧是要"往返补偿", 即:补偿表中,从0测到300mm,再从300mm测到0,测出正反 方向的误差,再填入补偿文件(如表1)。

30

20.0 40.0 ... 280.0 300.0 280.0 . . . 20.0 0.0 20.004 40.001 179.999 300.002 280.002 19.9998 0.001

表1 螺距误差补偿表

数据含义:

测量点数 偶数个,起点 0.0 的误差软件自动置 0,不要填。返回到起点可能

54

有误差,必须填 理论位置 实测位置

用激光测距仪测量误差程序

F1000

G90

G01 X20

G04 T1000

G01 X40

G04 T1000

•••

- G01 X300
- G04 T1000
- G01 X280

... MO2

每移动 20mm 停 1 秒钟, 使激光测距仪有时间纪录每个点的 位置。

除螺距误差外,还需要补偿由于工作台 X,Y 不垂直也会引起 加工误差:打开"参数"菜单下第 7 项"摄像与定位参数设置", 设置对话框中最后一项"垂直度误差补偿"项,测量工作台 Y 方向 100mm 处(X 不移动),打表测量 X 偏移距离,补偿值取反: 即向 X 轴负方向偏移时补偿为正,正方向偏移时补偿为负,没 有偏移时设为 0。软件对垂直度误差自动进行补偿。

通过软件补偿工作台误差,可以成倍提高加工精度,而不增 加硬件成本。

17 极坐标系实现匀速加工零件

旋转类零件采用极坐标编程加工: 旋转轴 C + 沿半径方向移动轴 X, 两轴联动。 优点:

- 1 加工速度快且匀速。
- 2 编程简单,

G11 X-40.0 Y0 表示旋转中心到起点的坐标是 -40, 0 加工起点必须在 X 轴上,即起点 Y 坐标为 0.

例:带圆角方形零件加工

G11 X-40.000 Y0.000 G64 M09 M92 M07 M91 G01 X0.000 Y-40.000 G03 X5 Y-5 I5 J0 G01 X80.000 Y0.000 G03 X5 Y5 I0 J5 G01 X0.000 Y80.000 G03 X-5 Y5 I-5 J0 G01 X-80.000 Y0.000 G03 X-5 Y-5 I0 J-5 G01 Y-40 M08 M10 M02

这种焊接方法有两大优点:

- 焊接质量提高,采用完全匀速焊接,光斑完全均匀一直,焊 接质量美观。
- 2 焊接速度快,因为采用完全匀速焊接,没有加减速时间,工
 件焊接时间加快了1 2秒。

注: 可能出现的问题

1 轨迹完全不对。 请把 C 轴反向(方向正与方向负对换)。

2 轨迹不重合。起点 Y 可能不为 0, 手动移动一下 Y 轴。或者工件的旋转中心没有找准。

18 送丝焊接功能

在特殊工艺参数中设置

AB轴送丝					
● 无送丝	加工层				
○ 连续送丝	1 🔻				
提前送丝 ms	0				
延时送丝 ms	0				
提前关送丝mm	0				
送丝速度 mm/s	10				
点焊提前关丝 ms	0				
送丝时间 ms	0				
间隙时间 ms	0				
回丝速度 mm/s	10				
回丝长度mm	2				
预送丝长度 mm	2				

HC2025 激光焊接送丝操作说明:

工件焊接轨迹由 X, Y, Z, C 四轴联动控制, 送丝由 A,B 轴 控制。可连续送丝和脉冲送丝。

连续送丝参数设置:

- 提前送丝 ms: 出光前先送丝,点焊或连续轨迹焊。
- 延时送丝 ms: 先出光点焊或移动轨迹再送丝。
- 提前关送丝距离 mm: 轨迹没有焊完前停止送丝。
- 回丝长度 mm: 当停止送丝,焊接位置处于熔化没有凝固时立 即把丝拉开距离。
- 预送丝长度 mm: 回丝完成并且关光后送丝长度,作用与提前送丝完全相同,不同之处,不占用加工节拍,节省了时间。
- 送丝与回丝速度 mm/s: 需要设置 A,B 轴脉冲当量,即单个脉 冲送丝长 um,就准确决定送丝速度。
- 送丝激光焊接中,每段线或者每个焊点的功率,频率,焊接速度,点焊时间都不相同,因此,激光电源参数设置中分5层,每层的参数都是独立的。示教编程中,将线段和焊点放在不同

58

层,程序自动保存所需要的参数加工。当修改电源参数时,当前工件程序的所以电源参数会自动更新。

- 脉冲送丝时需要设置送丝时间和间歇时间。
- 注: 点焊时间和波形在激光电源中设置,延时参数中 M07 延时用于连续轨迹焊接。

Laser Power						×		
功率与频率 开始阶段 收尾阶段 打点阶段								
速度模式下								
转角 DA 输出	出功率 % (0-100)	80	转角 PWM 占空比	上% (0-100)	80			
□ PWM脉宽 ms (QCW或脉冲激光器) 脚踏出光 DA 输出功率 % (0-100) 14								
		——多图层不同功	率与PWM控制一					
设置图层	最大DA功率 %	最大PWM%	PWM 频率	PWM脉宽	加工速度			
图层1	• 90	95	20000	0	3000			
图层2	C 85	90	18000	0	2500			
图层3	C 80	88	17000	0	2200			
图层4	C 75	85	17000	0	2000			
图层5	C 70	82	17000	0	1500			
功率控制方式								
○ 固定值 ○ 距离模式 ○ 速度模式								
确定 取消 应用(A) 帮助								

HC2025 软件调试技巧(主要是脉冲当量不会设)

1 步进当量 (脉冲当量) 测定

用编程方法确定步进当量: G22 指令表示用"脉冲数编程"(按 F1 键参看在线帮助)。例,运行程序

G22

G01 X1000

M02

则 X 轴走 1000 个脉冲,用尺测量出 X 走的长度 mm,即为脉冲当量。

2 I/O 端口测定

选菜单上的"I/O 端口测试",程序会弹出 I/O 端口测试对话框。然后用手按下极限开关或零位开关,程序自动检测断口,并 在相应位置打勾"v"。

用鼠标点工具栏上的"激光"、"保护气"、"光闸"等,相应的继电器会动作。

3 其它参数设置

"启动速度"一般设为 300 - 600。"加速度"一般设为 2-6 左右。

用户常提到的问题

1 偏位问题

最新网线卡采用差动输出,抗干扰能力很强,不会出现偏位问题,但如果脉冲正、脉冲负接反了,有可能引起累计偏位,因此,接线时请仔细核对接线图,按接线图接线(注:早期的金属盒上脉冲+、脉冲-印反了,请按照接线图接线)。

2 网络通讯偶偶中断

以前设计的卡全部采用外接+5V开关电源,当5V电压不稳定时,会影响卡的正常工作,当电压低于4.5V的时间大于0.5毫秒以上时,卡不能正常工作。因此,要求5V开关电源的功率不低于25W,并且将5V电压调高到5.1V,以保证卡100%无故障。

3 如何计算步进当量?

步进当量的含义,每个脉冲走多少距离或角度,单位 0.001mm/ 脉冲(即: um/脉冲),由步进电机驱动电源的细分数和滚珠丝杆螺 距决定。例:细分为 10,即步进电机每转为 2000 个脉冲,丝杆螺 距为 4mm,则步进当量为 2um。

步进当量=丝杆螺距 X 1000 / 每转脉冲数。

旋转轴 C 轴步进当量: 含义,每个脉冲转多少度,因为度的单位太大,以 1/1000 度为单位,即:每个脉冲转多少个 1/1000 度。 如,步进电机每转为 40000 个脉冲,则 C 轴步进当量为 360 X 1000/40000 = 9。

4 为什么有时切圆很不圆?

第一种不圆的现象:切出来的整圆有点象椭圆,并且是从起 点开始,45度位置的直径最小。原因:驱动器响应太慢(当采用 交流伺服系统时,步进电机没有这个问题)。解决办法:通过调 节伺服驱动器的参数,提高伺服驱动器的响应速度。(如果不是 切整圆,而是切小段圆弧,现象是小段圆弧接近直线。)

第二种不圆的现象:从起点开始,90度,180度或明或270 度位置有一段直线。原因:工作台存在反向间隙。需要消除或 减小反向间隙。

第三种不圆情况:对切完的小圆进行光学测量时,发现有一块"没切掉",其实是"熔渣"造成的,用铁丝刮一下可以去掉。

5 有哪些方法提高系统可靠性和抗干扰能力?

因为激光加工中,有上万伏的高压,不断充放电,所以,激光 电源对数控信号会有一定干扰。减少这些干扰,对提高加工精度 非常重要:

①对计算机和控制信号所用的开关电源,其~220V 采用隔离变压器。

- ②计算机机箱和激光电源电柜接地。
- ③在驱动器上,脉冲信号和方向信号对+5V加0.01u的滤波电容。 ④出激光控制信号线上加磁环。
- ⑤脉冲和方向信号用的屏蔽电缆的屏蔽层不能两端都接地或都悬空,应该一端接地,另一端悬空。
- ⑥脉冲和方向信号采用差动输出。
- ⑦在大型感性负载(如大型交流接触器线圈)两端并阻容吸收电路(用 0.1u 电容, 100 欧电阻)。
- ⑧计算机和激光电源尽量不要不放在同一个电柜。

⑨计算机机箱和激光电源电柜等的接地方法:必须采用"放射" 接法,千万不能用一根线串在一起后接地。

6 如何提高零位开关的精度?

一般光电开关或接近开关的精度只有 0.02mm。如果加一个比 较电路(LM393 芯片),精度可以提高到 0.002mm。

7 为什么有时提示"速度超过最大限速"报警?

为了防止编程时写错数值,在参数设置中,有一个"空走速度"参数,"空走速度"参数是 G00 的默认速度,也是系统的极限速度。编程时若速度超过这一值,就会提示错误。可进入参数设置(进入参数设置口令 2000),增大"空走速度"。

8 能不能4轴一起回零或任意2轴、3轴回零?

可以。回零方向,是否回零在参数设置中设置:-1表示负方向回零;1表示正方向回零;0表示该轴不回零。

9 什么是 G64 功能?

G64 功能就是小线段连续匀速加工,在程序的第一行写:

64

G64

程序自动判断两相邻直线(或圆弧)的夹角,当夹角接近 180 度时,不减速。当当夹角为锐角或 M 指令设置了延时的时侯减速, 因此,当需要允速加工时,延时参数尽可能设置为零。

10 为什么 G00 语句中的速度 F 不起作用?

$G00 \ X_ \ Y_ \ Z_ \ C_ \ F2000$

无论速度怎么改变,如:F2000,F4000,工作台运动速度都不会 改变。因为 GOO 是工作台以参数设置中的"空走速度"(极限速 度)运动,只有改变参数中的"空走速度"才起作用。

11 如何补偿光斑半径?

在自动编程 StarCAM 中进行半径补偿比较方便: 左边图标"复合功能"中第二项"按尺寸缩放所有图形",程序自动将封闭的内轮廓缩小,将封闭的外轮廓方大,不封闭的曲线不缩放。(注:补偿后再加引入/引出线)。

12 如何检测脉冲、方向信号?

脉冲和方向以及 M 指令输出信号全部为集电极开路输出,需要 用一个 1K 左右的上拉电阻(一端接+5V,另一端接输出口),测 量电阻两端压降。脉冲信号为平均电压 2.5V 左右。换向时,方向 信号分别为+5V 和 0V。

13 卡有时出现"找不到卡 No HC2025 Card" (PCI 卡),如何处理?

①90%以上原因是卡的金手指与 PCI 插槽接触不好。用酒精吧卡的金手指擦干净。如果还不行,请换一个插槽。

②可能是 M 指令输出时,外部产生电火花把卡打死了,在继电器 触点上并一个 0.1u 的电容就行了。

③卡被损坏,在保修期内,寄回厂家免费更换。过保修期的,跟 厂家协商处理。

14 调试时应注意哪些问题?

65

关键问题是不能把电源线接错。当 5V 电源接反时,会烧光藕 6N137 和 26LS31,电解电容可能会炸。电源错接到脉冲、方向、 M指令输出时,会烧相应的芯片 26LS31 或 2804。如果发生以上问题,可更换这些芯片。

15 对 HC2025 软件和卡,大部分用户最关心什么?

①软件方面,最关心的是加工精度,也就是偏位问题。以前软件 在微小圆弧计算时,当半径有误差时,可能出现1个脉冲量误差,并且会累积,最近已解决,完全消除了软件误差。此外,还可能 由激光电源干扰引起误差,需要用上述方法3解决。
②硬件方面,由几家用户都出现过找不到卡"No HC2025 Card"。 可由上述方法11 解决,用酒精清洗卡的金手指就可以了。

16卡的安装驱动程序安装不上怎么办?

原因: 以前安装过老 HC2025 卡驱动程序或其它 PCI 驱动程序。 解决办法: 用右键选 "我的电脑" -> "属性" -> "硬件" -> "设 备管理器" -> "PCI 设备" ->按右键-> "卸载"。 然后,选"操 作"->"扫描检测硬件改动"可安装新卡驱动程序。(Win98, Winme 可不安装驱动程序)。

HC2025 使用中的几个技巧问题

1 光斑半径补偿

在自动编程 StarCAM 中进行半径补偿比较方便: 左边图标"复合功能"中第二项"按尺寸缩放所有图形",程序自动将封闭的内轮廓缩小,将封闭的外轮廓方大,不封闭的曲线不缩放。(注:补偿后再加引入/引出线)。

2 从某一位置往下加工

将激光头对好工件起点,将光标移动到程序第一行,然后用向 下箭头移动光标(对应图形段变为红色),选择"运行"菜单下 的"从光标所在行往下加工",程序自动快速直线空走到加工位 置,并往下加工。

3 加工部分图形

StarCAM 中的图形在保存为数控加工文件时会弹出对话框,可以选择要加工的图形。

4 加工起点选择

Sconfig 目录下的 table. dat 文件中第二项 Start Point 设置为 Origin,表示从原点开始加工,否则,直接从零件起点开始加工。

Sconfig 目录下的 table. dat 文件中的其它功能设置:

3行Line Number: On/off 程序写行号

5行 Accuary: 4 程序小数点后精确位数

8 行 Absolute Program: on/off 绝对/增量坐标编程

5 带 Z 轴升降切割机升降高度设置

Sconfig 目录下的 table. dat 文件中第 11 项 Zup

Zup: 0 // Z 上升距离, 单位:mm 0 表示没有没有 Z 或者无 上升/下降。

6 步进当量 (脉冲当量) 测定

用编程方法确定步进当量: G22 指令表示用"脉冲数编程"(按 F1 键参看在线帮助)。例,运行程序

G22

G01 CX1000

M02

则 C 轴走 1000 个脉冲, C 旋转的角度(度)=C 脉冲当量, 即为脉冲当量。

7 程序中的回零指令应用

G10 Rn 程序运行 n 次后回一次零位。例:

G10 R10 程序每运行 10 次后回一次零位。

8 中英文界面设置

Sconfig 目录下的 language. lib 文件中设置为 CHINESE 或

67

ENGL I SH.

9 切割方向调整

由 AutoCAD 文件转换过来的图形, 有些切割方向是乱的。用"套料功能"中倒数第二项"切割反向", 输入"1"(全部调整), 可将切割方向调整为一个方向。个别地方还可以用局部反向(输入0)。

10 默认参数设置

Sconfig 目录下的 Startdef. dat 文件中设置: 矩形(长、宽)和圆(半径)尺寸,样条曲线数据,导入导出参数, 阵列参数(排列间距),虚线切切割(联在板上的长度,在"零件 图形"菜单下的"更改"中),桥切等默认参数。